12 research outputs found

    A comparison of smooth basis constructions for isogeometric analysis

    Full text link
    In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1C^1, Analysis-Suitable G1G^1 and the Approximate C1C^1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1C^1 and Analysis-Suitable G1G^1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1C^1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1C^1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1C^1 and Analysis-Suitable G1G^1 applicable to more complex geometries

    Practical isogeometric shape optimization: Parameterization by means of regularization

    Get PDF
    International audienceShape optimization based on Isogeometric Analysis (IGA) has gained popularity in recent years. Performing shape optimization directly over parameters defining the CAD geometry, such as for example the control points of a spline parametrization, opens up the prospect of seamless integration of a shape optimization step into the CAD workflow. One of the challenges when using IGA for shape optimization is that of maintaining a valid geometry parametrization of the interior of the domain during an optimization process, as the shape of the boundary is altered by an optimization algorithm. Existing methods impose constraints on the Jacobian of the parametrization, to guarantee that the parametrization remains valid. The number of such validity constraints quickly becomes intractably large, especially when 3D shape optimization problems are considered. An alternative, and arguably simpler, approach is to formulate the isogeometric shape optimization problem in terms of both the boundary and the interior control points. In order to ensure a geometric parametrization of sufficient quality a regularization term, such as the Winslow functional, is added to the objective function of the shape optimization problem. We illustrate the performance of these methods on the optimal design problem of electromagnetic reflectors and compare their performance. Both methods are implemented for multipatch geometries, using the IGA library G+Smo and the optimization library Ipopt. We find that the second approach performs comparably to a state of the art method with respect to both the quality of the found solutions and computational time, while its performance in our experience is more robust for coarse discretizations

    Punctual Hilbert Schemes and Certified Approximate Singularities

    Get PDF
    In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f =(f_1,,f_N)C[x_1,,x_n]N=(f\_1, \ldots, f\_N)\in C[x\_1, \ldots, x\_n]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of ff such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use α\alpha-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.Comment: International Symposium on Symbolic and Algebraic Computation, Jul 2020, Kalamata, Franc

    Multihomogeneous resultant formulae for systems with scaled support

    No full text
    Constructive methods for matrices of multihomogeneous (or multigraded) resultants for unmixed systems have been studied by Weyman, Zelevinsky, Sturmfels, Dickenstein and Emiris. We generalize these constructions to mixed systems, whose Newton polytopes are scaled copies of one polytope, thus taking a step towards systems with arbitrary supports. First, we specify matrices whose determinant equals the resultant and characterize the systems that admit such formulae. Bézout-type determinantal formulae do not exist, but we describe all possible Sylvester-type and hybrid formulae. We establish tight bounds for all corresponding degree vectors, and specify domains that will surely contain such vectors; the latter are new even for the unmixed case. Second, we make use of multiplication tables and strong duality theory to specify resultant matrices explicitly, for a general scaled system, thus including unmixed systems. The encountered matrices are classified; these include a new type of Sylvester-type matrix as well as Bézout-type matrices, known as partial Bezoutians. Our public-domain Mapleimplementation includes efficient storage of complexes in memory, and construction of resultant matrices. © 2011 Elsevier Ltd

    Multilinear polynomial systems: Root isolation and bit complexity

    No full text
    We exploit structure in polynomial system solving by considering polynomials that are linear in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolating hyperboxes for all the isolated complex roots of well-constrained, unmixed systems of multilinear polynomials based on resultant methods. We enumerate all expressions of the multihomogeneous (or multigraded) resultant of such systems as a determinant of Sylvester-like matrices, aka generalized Sylvester matrices. We construct these matrices by means of Weyman homological complexes, which generalize the Cayley-Koszul complex. The computation of the determinant of the resultant matrix is the bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector multiplication, which corresponds to multivariate polynomial multiplication, by extending the seminal work on Macaulay matrices of Canny, Kaltofen, and Yagati Canny et al. (1989) to the multihomogeneous case. We compute a rational univariate representation of the roots, based on the primitive element method. In the case of 0-dimensional systems we present a Monte Carlo algorithm with probability of success 1−1/2ϱ, for a given ϱ≥1, and bit complexity O˜B(n2D4+ϵ(nN+1+τ)+nD2+ϵϱ(D+ϱ)) for any ϵ>0, where n is the number of variables, D equals the multilinear Bézout bound, N is the number of variable subsets, and τ is the maximum coefficient bitsize. We present an algorithmic variant to compute the isolated roots of overdetermined and positive-dimensional systems. Thus our algorithms and complexity analysis apply in general with no assumptions on the input. © 202

    Voronoi diagrams of algebraic distance fields

    No full text
    We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or VDs of non-punctual sites. We use the Bernstein form of polynomials and DeCasteljau's algorithm to subdivide the initial domain and isolate bisector, or domains that contain a Voronoï vertex. The efficiency of our algorithm is due to a filtering process, based on bounding the field over the subdivided domains. This allows to exclude functions (thus sites) that do not contribute locally to the lower envelope of the lifted diagram. The output is a polygonal description of each Voronoï cell, within any user-defined precision, isotopic to the exact VD. Correctness of the result is implied by the certified approximations of bisector branches, which are computed by existing methods for handling algebraic curves. First experiments with our C++ implementation, based on double precision arithmetic, demonstrate the adaptability of the algorithm. © 2012 Elsevier Ltd. All rights reserved

    Axl, a Geometric Modeler for Semi-algebraic Shapes

    No full text
    We describe the algebraic-geometric modeling platform Axl, which provides tools for the manipulation, computation and visualisation of semi-algebraic models. This includes meshes, basic geometric objects such as spheres, cylinders, cones, ellipsoids, torus, piecewise polynomial parameterisations of curves, surfaces or volumes such as b-spline parameterisations, as well as algebraic curves and surfaces defined by polynomial equations. Moreover, Axl provides algorithms for processing these geometric representations, such as computing intersection loci (points, curves) of parametric models, singularities of algebraic curves or surfaces, certified topology of curves and surfaces, etc. We present its main features and describe its generic extension mechanism, which allows one to define new data types and new processes on the data, which benefit from automatic visualisation and interaction facilities. The application capacities of the software are illustrated by short descriptions of plugins on algebraic curves and surfaces and on splines for Isogeometric Analysis. © 2018, Springer International Publishing AG, part of Springer Nature

    Integration by Interpolation and Look-up for Galerkin-based Isogeometric Analysis

    No full text
    Even though isogeometric analysis has a clear advantage regarding the number of degrees of freedom needed to achieve a certain level of accuracy, the time needed for matrix assembly (by means of numerical integration of stiffness or mass matrix entries) constitutes a severe bottleneck in the process. In order to overcome this difficulty, we propose the new approach of Integration by Interpolation and Lookup (IIL). Firstly, applying spline interpolation to the common factors in the occurring integrals approximately transforms them into integrals of piecewise polynomial functions, whose integrands are expressed in tensor-product B-spline form. The common factors represent the influence of the geometry mapping (i.e., the NURBS domain parameterization) and the contributions of possibly non-constant material coefficients. Secondly, these integrals are evaluated exactly using pre-computed look-up tables for integrals of tri-products of univariate B-splines and their derivatives. For the model case of elliptic problems, we perform a theoretical analysis to demonstrate that the IIL method maintains the overall approximation order of the Galerkin discretization, provided that the spline interpolation is sufficiently accurate. Moreover, we provide a comparison of the computational complexity of our method with that of a standard Gauss quadrature method. Finally, we present experimental results to illustrate the performance of the ILL method and to support our theoretical results. Key words: isogeometric analysis, stiffness matrix, mass matrix, numerical integration, quadratur

    Axl, a geometric modeler for semi-algebraic shapes

    Get PDF
    International audienceWe describe the algebraic-geometric modeling platform Axl, which provides tools for the manipulation, computation and visualisation of semi-algebraic models. This includes meshes, basic geometric objects such as spheres, cylinders, cones, ellipsoids, torus, piecewise polynomial parameterisations of curves, surfaces or volumes such as b-spline pa-rameterisations, as well as algebraic curves and surfaces defined by polynomial equations. Moreover, Axl provides algorithms for processing these geometric representations, such as computing intersection loci (points, curves) of parametric models, singularities of algebraic curves or surfaces, certified topology of curves and surfaces, etc. We present its main features and describe its generic extension mechanism, which allows one to define new data types and new processes on the data, which benefit from automatic visualisation and interaction facilities. The application capacities of the software are illustrated by short descriptions of plugins on algebraic curves and surfaces and on splines for Isogeometric Analysis
    corecore